Microbiology

2025-2024

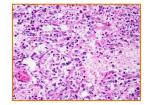
Dr.Saja Ebdah

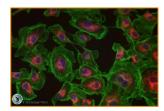
Laboratory Diagnosis and Treatment of Viral Infection

Specimens

- According to the disease
 - ✓ Respiratory Throat swab
 - \checkmark CNS CSF
 - ✓ Eyes- Conjunctival scrapings
 - ✓ Viremia Blood
 - ✓ GIT and Liver Stool
 - ✓ Skin Scrapings

Specimen Storage and Transport


- Keep specimens other than blood at 4oC
- ➤ If delay >24hrs, freeze at -70oC or below.
- Avoid any storage at -20oC: greater loss in infectivity
- Non-enveloped viruses more stable than enveloped
- Viral Transport Medium
 - ✓ Salt solution ensures proper ionic concentrations
 - ✓ Buffer maintains pH
 - ✓ Protein for virus stability
 - ✓ Antibiotics or antifungals to prevent contamination


• Methods use:

1. Microscopy

- ✓ Electron Microscope
- ✓ Light microscope Inclusion bodies
- ✓ Fluorescent Microscope -Fluorescent antibody technique

2. Demonstration of Viral Antigens

- ✓ Precipitation on gel eg HBsAg
- ✓ Immunofluorescence
- ✓ Enzyme Linkes Immuno Sorbant Assay (ELISA)

3. Serological Reactions (anti-viral antibodies)

- ✓ Rising titre of antibody in paired sample of sera for IgG antibody
 - First sample At the earliest
 - Second sample After 2 weeks
- ✓ Single sample IgM type of antibody detection
- ✓ Techniques –ELISA, Haemagglutination Inhibition (HAI)Test

4. Molecular Techniques

- ✓ Nucleic acid techniques such as polymerase chain reaction (PCR)
- ✓ To detect RNA, (converts RNA into cDNA). After this, PCR can be performed.
- ✓ Advantages: *very sensitive *measure the amount of virus (viral load) in a patient's sample.

5. Viral Isolation and Culture

- ✓ Primary purposes of viral cultivation:
 - To isolate and identify viruses in clinical specimens
 - To prepare viruses for vaccines
 - To do detailed research on viral structure, multiplication cycles, genetics, and effects on host cells

✓ Cells types :

- 1) Using Live Animal Inoculation
 - ✓ Specially bred strains of white mice, rats, hamsters, guinea pigs, and rabbits
 - ✓ Animal is exposed to the virus by injection

2) Using Bird Embryos

- ✓ Enclosed in an egg- nearly perfect conditions for viral propagation
- ✓ Chicken, duck, and turkey are most common
- ✓ Egg is injected through the shell using sterile techniques
- 3) Cell culture for viral identification
 - ✓ Routinely used for growing viruses
 - Classified into 3 types:
 - Primary cell culture normal cells freshly taken from body & cultured, limited growth
 - a) Rhesus monkey kidney
 - b) Chick embryo fibroblast
 - c) Human amnion cell culture
 - <u>Diploid cell strains</u> cells of single type (fibroblast cells) that can be subcultivated for limited number of times, mostly 50
 - a) WI-38: human embryonic lung cell
 - b) HL-8: Rhesus embryo cell
 - Continuous cell lines malignant cells, indefinite subcultivtion
 - a) HeLa: Human Ca of cervix cell line
 - b) HEP-2: Human epithelioma of larynx

Detection of virus growth in cell cultures

- 1. Cytopathic effects (*CPE*) morphological changes in cultured cells, seen under microscope, characteristic CPE for different groups of viruses
- 2. *Metabolic Inhibition* no acid production in presence of virus
- **3.** *Hemadsorption* influenza & parainfluenza viruses, by adding guinea pig erythrocytes to the culture
- **4.** *Interference* growth of a non-cytopathogenic virus can be tested by inoculating a known cytopathogenic [virus: growth of first virus will inhibit the infection by second]
- **5.** *Transformation* oncogenic viruses induce malignant transformation
- **6.** *Immunofluorescence* test for viral Ag in cells from viral infected cultures.

Reaction to physical and chemical agents

- 1. Heat and cold:
 - ✓ Icosahedral viruses tend to be stable, while Enveloped viruses are much more heat labile
 - ✓ Viral infectivity is generally destroyed by heating at 50–60°C for 30 minutes
 - ✓ Viruses can be preserved by storage at subfreezing temperatures
- **2.** *Salts*:
 - ✓ Many viruses can be stabilized by salts in order to resist heat inactivation
- **3.** *pH*:
 - ✓ Viruses are usually stable between pH values of 5.0 and 9.0. Some viruses (eg, enteroviruses) are resistant to acidic conditions. All viruses are destroyed by alkaline conditions.
- **4.** *Radiation*:
 - ✓ Ultraviolet, x-ray, and high-energy particles inactivate viruses
- 5. Detergents:
 - ✓ Solubilize lipid constituents of viral membranes and disrupt capsids into separated polypeptides
- **6.** Formaldehyde:
 - ✓ Formaldehyde destroys viral infectivity by reacting with nucleic acid
- 7. Quaternary ammonium, organic iodine, low-concentration chlorine, and Alcohols
 - ✓ Are relatively not effective against viruses

• Common Methods of Inactivating Viruses:

- > Sterilization
 - \checkmark May be accomplished by steam under pressure, dry heat, ethylene oxide, and γ-irradiation
- Surface disinfectants
 - ✓ Include sodium hypochlorite, glutaraldehyde, and formaldehyde
- Skin disinfectants
 - ✓ Include chlorhexidine, 70% ethanol, and iodophors
- Vaccine production
 - ✓ May involve the use of formaldehyde, ultraviolet irradiation, or detergents to inactivate the vaccine

Anti-viral Targets

- There are several known methods that the makers of Antiviral drugs are looking at, including:
 - 1. Inhibitors of Attachment
 - 2. Inhibitors of Cell Penetration and Uncoating
 - 3. Neuraminidase Inhibitors
 - 4. Protease Inhibitors
 - 5. Inhibitors of Nucleic Acid Synthesis
 - 6. Nucleotide Analogs
 - 7. Stopping the release of the mature viruses from the host cell

Dr. Saja Ebdah 2024/2025 Arkan academy

Antiviral drug:

- 1. Oseltamivir (Tamiflu)
 - Prevents the mature viruses from leaving the cell
 - It is a neuraminidase inhibitor, it works on both influenza A and B and avian flu

2. Acyclovir (Zovirax)

- A widely used antiviral with main implications in the treatment of herpes
- Inhibits viral DNA polymerase and terminates viral DNA chain growth

3. Interferons

- \triangleright a and β interferons are produced by all the cells in response to viral infections
- > γ interferons are produced only by T lymphocyte and NK cells in response to cytokines
- The action of interferons leads to an inhibition of translation
- Pegylated interferon-α (Peg-IFα) is given for 6 to 12 months to treat chronic hepatitis C disease

Viral Vaccines

- > General principles types:
 - 1. Killed-Virus Vaccines
 - 2. Attenuated Live-Virus Vaccines
 - 3. Genetic vaccines

- f Arkan academy
- Arkanacademy

- www.arkan-academy.com
- +962 790408805